Although various methods have been proposed for multi-label classification, most approaches still follow the feature learning mechanism of the single-label (multi-class) classification, namely, learning a shared image feature to classify multiple labels. However, we find this One-shared-Feature-for-Multiple-Labels (OFML) mechanism is not conducive to learning discriminative label features and makes the model non-robustness. For the first time, we mathematically prove that the inferiority of the OFML mechanism is that the optimal learned image feature cannot maintain high similarities with multiple classifiers simultaneously in the context of minimizing cross-entropy loss. To address the limitations of the OFML mechanism, we introduce the One-specific-Feature-for-One-Label (OFOL) mechanism and propose a novel disentangled label feature learning (DLFL) framework to learn a disentangled representation for each label. The specificity of the framework lies in a feature disentangle module, which contains learnable semantic queries and a Semantic Spatial Cross-Attention (SSCA) module. Specifically, learnable semantic queries maintain semantic consistency between different images of the same label. The SSCA module localizes the label-related spatial regions and aggregates located region features into the corresponding label feature to achieve feature disentanglement. We achieve state-of-the-art performance on eight datasets of three tasks, \ie, multi-label classification, pedestrian attribute recognition, and continual multi-label learning.
translated by 谷歌翻译
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
translated by 谷歌翻译
视频对象检测一直是计算机视觉中一个重要但充满挑战的话题。传统方法主要集中于设计图像级或框级特征传播策略以利用时间信息。本文认为,通过更有效,更有效的功能传播框架,视频对象探测器可以在准确性和速度方面提高。为此,本文研究了对象级特征传播,并提出了一个针对高性能视频对象检测的对象查询传播(QueryProp)框架。所提出的查询Prop包含两个传播策略:1)查询传播是从稀疏的钥匙帧到密集的非钥匙框架执行的,以减少非钥匙帧的冗余计算; 2)查询传播是从以前的关键帧到当前关键框架进行的,以通过时间上下文建模来改善特征表示。为了进一步促进查询传播,自适应传播门旨在实现灵活的钥匙框架选择。我们在Imagenet VID数据集上进行了广泛的实验。 QueryProp通过最先进的方法实现了可比的精度,并实现了不错的精度/速度权衡。代码可在https://github.com/hf1995/queryprop上获得。
translated by 谷歌翻译
随着alphago的突破,人机游戏的AI已经成为一个非常热门的话题,吸引了世界各地的研究人员,这通常是测试人工智能的有效标准。已经开发了各种游戏AI系统(AIS),如Plibratus,Openai Five和AlphaStar,击败了专业人员。在本文中,我们调查了最近的成功游戏AIS,覆盖棋盘游戏AIS,纸牌游戏AIS,第一人称射击游戏AIS和实时战略游戏AIS。通过这项调查,我们1)比较智能决策领域的不同类型游戏之间的主要困难; 2)说明了开发专业水平AIS的主流框架和技术; 3)提高当前AIS中的挑战或缺点,以实现智能决策; 4)试图提出奥运会和智能决策技巧的未来趋势。最后,我们希望这篇简短的审查可以为初学者提供介绍,激发了在游戏中AI提交的研究人员的见解。
translated by 谷歌翻译
步行属性识别旨在将多个属性分配给由视频监控摄像机捕获的一个行人图像。虽然提出了许多方法并进行了巨大的进展,但我们认为现在是时候退回和分析该地区的现状。我们回顾并重新思考从三个角度来看最近的进展。首先,鉴于人们没有明确和完整的行人属性识别定义,我们正式定义和区分步行属性识别与其他类似任务。其次,根据拟议的定义,我们暴露了现有数据集的局限性,违反了学术规范,并与实际行业申请的基本要求不一致。因此,我们提出了两个数据集,Peta \ TextSubscript {$ zs $}和rap \ textsubscript {$ zs $},在行人身份上的零拍设置之后构建。此外,我们还为未来的行人属性数据集建设介绍了几种现实标准。最后,我们重新实现现有的最先进的方法,并引入强大的基线方法,以提供可靠的评估和公平的比较。实验是在四个现有数据集和两个拟议的数据集中进行,以衡量行人属性识别的进展情况。
translated by 谷歌翻译
Adaptive optimization methods are well known to achieve superior convergence relative to vanilla gradient methods. The traditional viewpoint in optimization, particularly in convex optimization, explains this improved performance by arguing that, unlike vanilla gradient schemes, adaptive algorithms mimic the behavior of a second-order method by adapting to the global geometry of the loss function. We argue that in the context of neural network optimization, this traditional viewpoint is insufficient. Instead, we advocate for a local trajectory analysis. For iterate trajectories produced by running a generic optimization algorithm OPT, we introduce $R^{\text{OPT}}_{\text{med}}$, a statistic that is analogous to the condition number of the loss Hessian evaluated at the iterates. Through extensive experiments, we show that adaptive methods such as Adam bias the trajectories towards regions where $R^{\text{Adam}}_{\text{med}}$ is small, where one might expect faster convergence. By contrast, vanilla gradient methods like SGD bias the trajectories towards regions where $R^{\text{SGD}}_{\text{med}}$ is comparatively large. We complement these empirical observations with a theoretical result that provably demonstrates this phenomenon in the simplified setting of a two-layer linear network. We view our findings as evidence for the need of a new explanation of the success of adaptive methods, one that is different than the conventional wisdom.
translated by 谷歌翻译
视觉同时定位和映射(VSLAM)在计算机视觉和机器人社区中取得了巨大进展,并已成功用于许多领域,例如自主机器人导航和AR/VR。但是,VSLAM无法在动态和复杂的环境中实现良好的定位。许多出版物报告说,通过与VSLAM结合语义信息,语义VSLAM系统具有近年来解决上述问题的能力。然而,尚无关于语义VSLAM的全面调查。为了填补空白,本文首先回顾了语义VSLAM的发展,并明确着眼于其优势和差异。其次,我们探讨了语义VSLAM的三个主要问题:语义信息的提取和关联,语义信息的应用以及语义VSLAM的优势。然后,我们收集和分析已广泛用于语义VSLAM系统的当前最新SLAM数据集。最后,我们讨论未来的方向,该方向将为语义VSLAM的未来发展提供蓝图。
translated by 谷歌翻译
量化的神经网络吸引了很多关注,因为它们在推理过程中降低了空间和计算复杂性。此外,人们已经有民间传说是一种隐性的正规化程序,因此可以改善神经网络的普遍性,但是没有现有的工作正式使这种有趣的民间传说形式化。在本文中,我们将神经网络中的二元权重作为随机舍入的随机变量,并研究神经网络中不同层的分布传播。我们提出了一个准神经网络来近似分布传播,该分布传播是一个具有连续参数和平滑激活函数的神经网络。我们为该准神经网络得出神经切线核(NTK),并表明NTK的特征值大约以指数呈指数速率衰减,这与具有随机尺度的高斯内核相当。这反过来表明,与具有实际价值权重的二元重量神经网络的繁殖核Hilbert空间(RKHS)涵盖了严格的功能子集。我们使用实验来验证我们提出的准神经网络可以很好地近似二进制重量神经网络。此外,与实际值重量神经网络相比,二进制重量神经网络的概括差距较低,这与高斯内核和拉普拉斯内核之间的差异相似。
translated by 谷歌翻译
我们从经典非参数回归问题的镜头研究神经网络(NN)的理论,重点是NN具有异质平滑度自适应估计功能的能力 - BESOV或有界变异(BV)类的功能属性。关于此问题的现有工作需要根据功能空间和样本量来调整NN体系结构。我们考虑了Deep Relu网络的“平行NN”变体,并表明标准重量衰减相当于促进端到端学习的系数向量的$ \ ell_p $ -sparsity($ 0 <p <1 $)函数基础,即字典。使用这种等效性,我们进一步确定,仅通过调整权重衰减,这种平行的NN就可以任意接近BESOV和BV类的最小值率达到估计误差。值得注意的是,随着NN的深度,它呈指数级接近最佳。我们的研究为为什么深度重要以及NNS如何比内核方法更强大。
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译